High-throughput analysis of epistasis in genome-wide association studies with BiForce
نویسندگان
چکیده
MOTIVATION Gene-gene interactions (epistasis) are thought to be important in shaping complex traits, but they have been under-explored in genome-wide association studies (GWAS) due to the computational challenge of enumerating billions of single nucleotide polymorphism (SNP) combinations. Fast screening tools are needed to make epistasis analysis routinely available in GWAS. RESULTS We present BiForce to support high-throughput analysis of epistasis in GWAS for either quantitative or binary disease (case-control) traits. BiForce achieves great computational efficiency by using memory efficient data structures, Boolean bitwise operations and multithreaded parallelization. It performs a full pair-wise genome scan to detect interactions involving SNPs with or without significant marginal effects using appropriate Bonferroni-corrected significance thresholds. We show that BiForce is more powerful and significantly faster than published tools for both binary and quantitative traits in a series of performance tests on simulated and real datasets. We demonstrate BiForce in analysing eight metabolic traits in a GWAS cohort (323 697 SNPs, >4500 individuals) and two disease traits in another (>340 000 SNPs, >1750 cases and 1500 controls) on a 32-node computing cluster. BiForce completed analyses of the eight metabolic traits within 1 day, identified nine epistatic pairs of SNPs in five metabolic traits and 18 SNP pairs in two disease traits. BiForce can make the analysis of epistasis a routine exercise in GWAS and thus improve our understanding of the role of epistasis in the genetic regulation of complex traits. AVAILABILITY AND IMPLEMENTATION The software is free and can be downloaded from http://bioinfo.utu.fi/BiForce/. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
BiForce Toolbox: powerful high-throughput computational analysis of gene–gene interactions in genome-wide association studies
Genome-wide association studies (GWAS) have discovered many loci associated with common disease and quantitative traits. However, most GWAS have not studied the gene-gene interactions (epistasis) that could be important in complex trait genetics. A major challenge in analysing epistasis in GWAS is the enormous computational demands of analysing billions of SNP combinations. Several methods have...
متن کاملGenome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis
Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...
متن کاملGenome Wide Association Studies, Next Generation Sequencing and Their Application in Animal Breeding and Genetics: A Review
Recently genetic studies have been revolutionized by next generation sequencing (NGS) technology, and it is expected that the use of this technology will largely eliminate defects in the methods of association studies. The NGS technology is becoming the premier tool in genetics. However, at the moment the use of this method is limited especially in the livestock due to high cost and computation...
متن کاملCharacterisation of Genome-Wide Association Epistasis Signals for Serum Uric Acid in Human Population Isolates
Genome-wide association (GWA) studies have identified a number of loci underlying variation in human serum uric acid (SUA) levels with the SLC2A9 gene having the largest effect identified so far. Gene-gene interactions (epistasis) are largely unexplored in these GWA studies. We performed a full pair-wise genome scan in the Italian MICROS population (n = 1201) to characterise epistasis signals i...
متن کاملComparison of analyses of the QTLMAS XII common dataset. II: genome-wide association and fine mapping
As part of the QTLMAS XII workshop, a simulated dataset was distributed and participants were invited to submit analyses of the data based on genome-wide association, fine mapping and genomic selection. We have evaluated the findings from the groups that reported fine mapping and genome-wide association (GWA) efforts to map quantitative trait loci (QTL). Generally the power to detect QTL was hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 28 شماره
صفحات -
تاریخ انتشار 2012